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Abshact. The problem of finding a density matrix corresponding to a Husimi distribution 
is solved io a simple, new way. It is shown how the proposed procedure may be effectively 
used to answer the question raised in the title, 

1. Introduction 

The oldest and the most elaborated phase space formulation of quantum mechanics 
was originated by Wiper in his 1932 seminal paper [l], in which every quantum 
mechanical state was represented by a corresponding function in phase space-its 
Wiper function. This formulation is now an indispensable language of many branches 
of physics. Although in calculations of quantum mechanical averages the Wiper func- 
tion plays a role analogous to that of the classical distribution function [Z], it cannot 
be interpreted as a probability distribution because in the general case it necessarily 
assumes negative values. To overcome this difficulty in interpretation and due to other 
more concrete reasons, several non-negative distribution functions were introduced. 

The first to be introduced and the most widely used non-negative distribution func- 
tion is the well known Husimi function [3]. Being non-negative by definition, the Husimi 
function can always be interpreted as some probability distribution on phase space. 
But this is not only a formal possibility. It has been shown that the Husimi function 
may be interpreted as the probability distribution for the statistics in a particular phys- 
ical model for simultaneous measurement of coordinate and momentum [4,5]. In a 
mathematically general and systematic way, Holevo [6 ]  has shown that the Hnsimi 
function of any quantum mechanical state arises naturally whenever the simultaneous 
measurement of coordinate and momentum is performed on this state with maximal 
accuracy allowed by the uncertainty relations. 

Quantum mechanics can be completely formulated in terms of the Husimi distribu- 
tion [7-111. However, unlike with the case of quantum mechanics in standard formula- 
tion, when one solves, for example, an eigenvalue equation in Husimi representation, 
one can obtain solutions which are mathematically acceptable but which do not have 
physical meaning [12]. Only those solutions have a physical meaning for which the 
corresponding quantum mechanical states, described by wavefunctions or more gen- 
erally by density matrices, exist. For this reason it is necessary to have an efficient 
method enabling one to single out those functions in p h e  space which may correspond 
to some quantum mechanical states. 
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A similar necessity arises in the investigations of the correspondence between distri- 
bution functions in classical statistical mechanics and distributions in phase space rep- 
resentations of quantum mechanics. So, examining the general properties of entropy, 
Wehrl [ 131 noticed the striking paradox that the entropy defined quantum mechanically 
is always positive and cannot be greater than the entropy obtained in classical approxi- 
mation defined in an appropriate way, while the latter for some distributions may well 
be negative. The reason for this paradox is that not every classical probability distribu- 
tion has its quantum mechanical counterpart, and thus cannot be observed in nature. 

In the present paper we first establish a new method for obtaining the corresponding 
density matrix from a given Husinii function and compare it with existing methods. 
Then we show how the proposed method may be effectively used in answering the 
question whether a given function in phase space may be a Husimi distribution. We 
also treat one concrete example. For simplicity we restrict our considerations to the 
one-dimensional case. 

2. Obtaining the density matrix from the Husimi function 

Up to a numerical factor, the Husimi distribution function D ~ ( q , p )  may be defmed as 
the diagonal matrix element of the density matrix $ in the harmonic oscillator coherent 
states basis I a) .  We can write 

D H ( s , P ) = ~ / ( ~ z ~ ) < ~  I$la>. (1) 

(x I a )  = (b/n)'l4 exp[-b/2(~-q)~+ipx/Ei] 

For I a )  in the coordinate representation we have 

(2) 

where b=mw/fi, a =(b/2)L/Zq+i/fi(2b)-' /2p.  
Since every density matrix by definition may be represented in the form 

NX, Y )  =E akY;(x)yI:w aka0 (3) 
k 

it is necessarily a positive definite function. Using the above relations, after simple 
rearrangements of terms we obtain 

KDH(q, p )  = e-'q2 {T rZ*'~'pa(x) exp[-b/2~+x(bq+ip/a)I d~ 

where K = 2 ~ f i  (n/b)'l2. From the last equality it is obvious that DH(q,p)  has all 
derivatives over q andp so that it is an entire function of q andp andmay be analytically 
continuated to complex values of q andp [7]. This feature of the Husimi function may 
be used to find the relation between non-diagonal matrix elements in the coherent state 
basis and the values of the Husimi function in the complex domain. This relation is 
useful for obtaining the corresponding density matrix from a given HlLFimi function. 
To show this we shall choose complex values for the arguments of the Husimi function 
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which will be denoted by tj andF, such that the following relations hold: 
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b@iF/fi=bql +ip~/fi 

bg - bqz- i p z / f i  

or equivalently 

~=1(q1+qz )+ i (p l -p2 ) / (2b f i )  

~ = k p 1  +p2)+iiib(q2-41)/2. 

With (9, from the relation (4) we obtain 

The right-hand side of the last equation is equal to the non-diagonal matrix element 
of the density matrix we were looking for, up to a multiplication factor. Putting 41 = 
q z = O  in (6) and keeping in mind (5 )  we obtain 

n 

Inverting the Fourier transforms appearing in this relation we obtain the density matrix 
in the form 

b(x, Y) =c & Y k ( X ) ‘ Y k O *  
k 

= K  exp[b(2 +y2)/21/(2afi)z DH(i(Pi -~2)/(2bfi), 

(8) (PI +PZ) /~)  exp[-(pl-~Z)~/(4bfi~) - ipdh+ips/f i l  dpl dp2. 

When the Husimi distribution is available in the analytic form, the last relation can 
be effectively used to invert the Husimi function and so obtain the corresponding density 
matrix. 

We shall now briefly describe the formulae for inversion of the Husimi function 
available in the literature, in order to compare them with our result. 

Departing from coherent states expressed through the eigen-energy states of the 
harmonic oscillator [ 141, one easily obtains 

s 

<alpla>= 1 <nlblm> e-la12a*nam/(n!m!)1” 
n,m 
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and from there 
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<nibIm>=(n!m!)’/’[B/aa*” T-/aam eaa’<a I b l a > ~ ~ . ~ .  
A formula for inversion of the Husimi function was derived for the first time by 

Another formula for inversion may be obtained from the differential relation 
Kano [15] and is very similar to the one just presented. 

between the Husimi function and the Wigner function. One can write [16] 

DH(q, P) = exp(a Wad + 1/a @/aP2) w(q, P) 

E(q, p)=exp(-a @ / a d -  1/a a’/$’)DH(q, PI. 
and from there 

From the Wigner function, which in our case is expressed through the Husimi 
function, one can obtain the density matrix using the Weyl transformation [17]. 

Both formulae are used mainly in theoretical considerations and although formally 
simple, are of little practical use due to the appearance of an infinite series of operators. 

From the integral relation between the Husimi function and Wigner function 

DH(q, p)=Je-u<F#~~- I/.(P--p?lw( q’, P’) d# W 

using the Fourier transform twice in an obvious way, the Wigner function may be 
obtained and then, from it, the density matrix. 

Mizrahi, who in a series of papers [S-101 gave the first systematic formulation of 
quantum mechanics in terms of Husimi function, proposed the following formula for 
inversion of the Husimi function 

p(2 ,  x) =exp[d/2(x’-x)’] 2 ( -y / (n~)  
n-0 

x dq dp H~[a(q-(x+x‘)’/z)llu(q, P; x, x’)DH(q, P) s 
where K(q,p;  n, x’) = (d/n)l” exp[-a’(q- (x+x‘)/2)’- d(x-d)’+ ip(x-x‘)]. 

To obtain the density matrix in our formalism it is sufficient to make a simple 
change of variables and then the Fourier transform. Compared with the complicated 
procedures one has to perform in all the described approaches, it is evident that our 
method is essentially simpler. In the next section we will demonstrate the use of our 
method on one concrete example. 

3. Applications 

We have just shown how a density matrix may be obtained for a given Husimi function. 
Now we shall show how the same method may be used to find the conditions under 
which a given function in phase space F(q, p )  belongs to the class of Husimi distribu- 
tions. First, this function must be non-negative and an entire function of its variables. 
Further, from the structure of the right-hand side of (7), it is evident that the expression 
appearing on its left side is a positive definite function for every Husimi distribution. 
So, the necessary condition for F(q,p) to be a Husimi distribution is that the same 
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expression for it is positive definite. In detail, when we take 
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the expression 

=exp(-=)fb P: +p: > Pz)  

must for some positive values of a parameter b be positive definite. This condition is 
at the same time sacient. Namely, the expression (10) has such analytic strncture and 
asymptotic behaviour at infinity, that the function which one obtains from it after the 
transformation appearing in (8) does not diverge and has all the necessary features of 
a density matrix. In this way, in order to find whether a given non-negative normalized 
entire function is a Husimi distribution, we have only to see whether the expression 
(IO) for this function is positive definite. 

To prove the above statement in detail let us note that when the expression (10) is 
positive definite it may, due to its analyticity, be represented as follows 

where the coefficients are written in a form convenient for further use. Performing here 
the transformation inverse to that in (9) we obtain 

Any putative Husimi function must be normalized to unity. Thus, after integration of 
(12) in the q-p plane using polar coordinates, we obtain the following relation for 
coefficients : 
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Performing now in (11) the operation appearing in (8) and taking into account that 
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we obtain for a putative density matrix 

Since the Hermitean polynomials are orthogonal, the trace 5 pp(x,,y) dx of this matrix 
is equal to unity because of the relation (13). As we saw, this relation follows from the 
normalization of F(q, p )  to unity. Thestructure of pp(x,  y) is such that it is manifestly 
positive definite. So, it is a true density matrix. The Husimi function of this density 
matrix is obviously F(q, p ) .  In this way we have shown that whenever a positive param- 
eter b may be chosen in such a way that the expression (10) becomes positive definite, 
there exists a density matrix for which F(q,p) is its Husimi function. 

Now we shall apply the developed formalism to a Gaussian distribution in phase 
space. Kriiger [18] recently found the conditions which the parameters of a Gaussian 
distribution must satisfy in order that it is possible to interpret such a distribution as 
a Wigner function. Here, we shall find the conditions under which a Gaussian distribu- 
tion may be interpreted as a Husimi function. 

Let us consider the Gaussian distribution 

F(q ,p )=Nexp[ - /3p2-y~+6pq1  N=(/3y - J2/4)/x (14) 

F(%;p3 ebp=N e x p [ - a p : - a * p ~ + c p ~ p z l = f ( p l , p ~ )  (15) 

where /3, y and 6 are real parameters, /3 >O, y>  0, and /3y> S2/4. 
Performing the change of variables according to (9), the expression (10) becomes 

where 

a=[/3+ l/(bh2)- y/(b2h2)-i6/(bh)]/4 (16) 

C= [-/3 + l/(bh2) - y/(b'h2)]/4 (17) 

and where a* denotes the complex conjugate of a. Now we have to find for which 
values of the parameters the function Apl ,p2) is positive de6nite. If e is negative 
J ( p l , p 2 )  cannot be positively definite. Namely, in this case we would have 

(18) k k k  m 
f (pI .p2)= (-1) pIp2 Iclk/(k!) exp[-ap?-a*p$]. 

k-0 

For any real odd function because of the relation Y(p) = -Y(-p), we would have 

{ f ( p , , p ~ Y ( p d Y ( p d  dpl dpz=-C k I ~ \ ~ + l ( z u r + ~  I2/(2k+1)! (19) 

where zk=spk  e-'pzY(p) dp so that the expression (19) is negative. For c>O f ( p l  , p z )  
is obviously positive definite. This condition reads, in detail 

l/(bhz) -/3 - y/(b2h2) 20 
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or 

(20) -0 2 2 2  b h + P b - p y > O .  

1-4h2,8y>0 (21) 

1 - (1 -4h2Py)1/2<2h2bp < 1 + (1 - 4h2py)”2. (22) 

This inequality is satisfied when 

and 

We can thus conclude that the Gaussian distribution (14) may be interpreted as a 
Husimi function whenever P y <  1/(4h2). When this condition is satisfied the existence 
of a density matrix is guaranteed and we can find it using the method developed in the 
preceding section. Using the well known integral Jexp(-at‘-Bt) dt=(7c/4)In 
exp(-b2/a) twice, we can easily transform the function from (15) according to (8) and 
obtain 

p(x, y) = 7cN(aa* - 2)-’” exp[-g(a*/d- b / 2 )  - y2(a/d- b / 2 )  + 2xyc/d] (23) 
where d=4p(aa* -ez). 

Here, b must be chosen so that (22) is satisfied. We see that for fixed p and y 
satisfying 4hz,8y < 1 (and of course P y > S2/4) we can choose two values of b for which 
(23) represents a pure state (c=O) and the whole interval of values for b defined by 
(22) when (23) is a mixed state (c>O). When 1 -4h2py=0 the inequality (22) has a 
unique solution for b and (23) becomes a pure state. Only in this case can we ascribe 
a unique quantum mechanical state to the Husimi function of the Gaussian type. 
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